
PKCS - Public Key Crypto System: 1.Key generation

ElGamal Encryption ElGamal and Schnorr signatures

Exam content.
1.Oral part. You can prepare formulas in advance without comments.
 1.1.Coin flipping.
 1.2.Bit commitment using RSA.
2.Computation part. You should provide a computations and write results in the Google drive.
 The training of this part will be realized in 10-th of December during our class.
 2.1.Proxy signature realization.
 2.2.Additively-multiplicative encryption realization.

Poster Report (PR) presentation will be held in 17-th of December during our class.
PR requirements are placed in:
https://docs.google.com/document/d/1raqTudLCNlLm3wLFCDp_V7QnOg_EFH6d/edit?
usp=sharing&ouid=111502255533491874828&rtpof=true&sd=true

PR topic are placed in:
https://docs.google.com/document/d/1KjXlhHhRQJnKnbCbK8crbOxoxy-EaSBf/edit?
usp=sharing&ouid=111502255533491874828&rtpof=true&sd=true

027_017 Homom-Enc-ElGam

 027_017 Homom-Enc-ElGam Page 1

https://docs.google.com/document/d/1raqTudLCNlLm3wLFCDp_V7QnOg_EFH6d/edit?usp=sharing&ouid=111502255533491874828&rtpof=true&sd=true
https://docs.google.com/document/d/1raqTudLCNlLm3wLFCDp_V7QnOg_EFH6d/edit?usp=sharing&ouid=111502255533491874828&rtpof=true&sd=true
https://docs.google.com/document/d/1KjXlhHhRQJnKnbCbK8crbOxoxy-EaSBf/edit?usp=sharing&ouid=111502255533491874828&rtpof=true&sd=true
https://docs.google.com/document/d/1KjXlhHhRQJnKnbCbK8crbOxoxy-EaSBf/edit?usp=sharing&ouid=111502255533491874828&rtpof=true&sd=true

ElGamal Encryption ElGamal and Schnorr signatures

Additively inverse element -x to element x modulo p-1.
>> mx=mod(-x,p-1)

δ-x mod p computation using Fermat theorem:

δ

Asymmetric Encryption - Decryption
c=Enc(PuKA, m) = (E, D)
m=Dec(PrKA, c)

Asymmetric Signing - Verification
Sign(PrKA, m) = σ = (r, s)

V=Ver(PuKA, m, σ), V{True, False} {1, 0}

 027_017 Homom-Enc-ElGam Page 2

δ-x mod p computation using Fermat theorem:
If p is prime, then for any integer z holds zp-1 = 1 mod p.

 δ-x = δp-1-x mod p

Multiplicatively Homomorphic Encryption

 027_017 Homom-Enc-ElGam Page 3

Homomorphic encryption: cloud computation with encrypted data

How to provide anonymity of transaction amounts
and to verify the balance: m1+m2 = m3+m4 ?
n1= gm1 mod p n3= gm3 mod p
n2= gm2 mod p n4= gm4 mod p

If m1+m2 = m3+m4,
Then n1*n2 = n3*n4.

Additively-Multiplicative ElGamal encryption.

Zether: Towards Privacy in a Smart Contract World
Financial Cryptography and Data …, 2020 - Springer

From <https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Zether%
3A+Towards+Privacy+in+a+Smart+Contract+World&btnG=>

Benedikt Bunz1, Shashank Agrawal2, Mahdi Zamani3, and Dan Boneh4

1Stanford University, benedikt@cs.stanford.edu
2Visa Research, shaagraw@visa.com
3Visa Research, mzamani@visa.com
4Stanford University, dabo@cs.stanford.edu

Ctrl/F --> ElGamal --> Exact mathes 21

 027_017 Homom-Enc-ElGam Page 4

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Zether%3A+Towards+Privacy+in+a+Smart+Contract+World&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Zether%3A+Towards+Privacy+in+a+Smart+Contract+World&btnG=

Cloud Service
Data Center

Zether: Towards Privacy in a Smart Contract World
Financial Cryptography and Data …, 2020 - Springer

>> int64(2^32)
ans = 4 294 967 296

 027_017 Homom-Enc-ElGam Page 5

However, gm needs to be brute-forced to compute m.
We argue that this is not an issue.
First, as we will see, the Zether smart contract does not need to do this, only the users would do it.
Second, users will have a good estimate of ZTH in their accounts because, typically, the transfer amount is
known to the receiver. Thus, brute-force computation would occur only rarely.
Third, one could represent a large range of values in terms of smaller ranges.
For instance, if we want to allow amounts up to 32bits, we solve the duality problem for amount m.

% Finds discrete logarithm value corresponding to exponent value i
% by total scan of i from start by step until fin
% p - is a strong prime (Public Parameter)
% g - is a generator (Public Parameter)
% def - is a discrete exponent function value computed by mod_exp(g,i,p)
% where dl=i is a searchable value of exponent

 027_017 Homom-Enc-ElGam Page 6

Till this place

 027_017 Homom-Enc-ElGam Page 7

